8,403 research outputs found

    Performance Analysis of Physical Layer Network Coding for Two-way Relaying over Non-regenerative Communication Satellites

    Full text link
    Two-way relaying is one of the major applications of broadband communication satellites, for which an efficient technique is Physical Layer Network Coding (PLNC). Earlier studies have considered satellites employing PLNC with onboard processing. This paper investigates the performance of PLNC over non-regenerative satellites, as a majority of the operational and planned satellites have no onboard processing. Assuming that the channel magnitudes of the two users are equal, two operating conditions are considered with uncoded-QPSK relaying. In the first condition, both users are completely synchronized in phase and transmit power, and in the second condition, phase is not synchronized. The peak power constraint imposed by the satellite amplifier is considered and the error performance bounds are derived for both the conditions. The simulation results for end-to-end Bit Error Rate (BER) and throughput are provided. These results shall enable communication system designers to decide system parameters like power and linearity, and perform tradeoff analysis between different relaying schemes.Comment: 9 pages and 13 figure

    Estimation in a discrete tail rate family of recapture sampling models

    Get PDF
    In the context of recapture sampling design for debugging experiments the problem of estimating the error or hitting rate of the faults remaining in a system is considered. Moment estimators are derived for a family of models in which the rate parameters are assumed proportional to the tail probabilities of a discrete distribution on the positive integers. The estimators are shown to be asymptotically normal and fully efficient. Their fixed sample properties are compared, through simulation, with those of the conditional maximum likelihood estimators

    Barriers and dispersal surfaces in minimum-time interception

    Get PDF
    Minimum time interception of a target moving in a horizontal plane is analyzed as a one-player differential game. Dispersal points and points on the barrier are located for a class of pursuit evasion and interception problems. These points are determined by constructing cross sections of the isochrones and hence obtaining the barrier, dispersal, and control level surfaces. The game solution maps the controls as a function of the state within the capture region

    Optimal feedback strategies for pursuit-evasion and interception in a plane

    Get PDF
    Variable-speed pursuit-evasion and interception for two aircraft moving in a horizontal plane are analyzed in terms of a coordinate frame fixed in the plane at termination. Each participant's optimal motion can be represented by extremal trajectory maps. These maps are used to discuss sub-optimal approximations that are independent of the other participant. A method of constructing sections of the barrier, dispersal, and control-level surfaces and thus determining feedback strategies is described. Some examples are shown for pursuit-evasion and the minimum-time interception of a straight-flying target

    Single-Symbol ML Decodable Distributed STBCs for Partially-Coherent Cooperative Networks

    Full text link
    Space-time block codes (STBCs) that are single-symbol decodable (SSD) in a co-located multiple antenna setting need not be SSD in a distributed cooperative communication setting. A relay network with N relays and a single source-destination pair is called a partially-coherent relay channel (PCRC) if the destination has perfect channel state information (CSI) of all the channels and the relays have only the phase information of the source-to-relay channels. In this paper, first, a new set of necessary and sufficient conditions for a STBC to be SSD for co-located multiple antenna communication is obtained. Then, this is extended to a set of necessary and sufficient conditions for a distributed STBC (DSTBC) to be SSD for a PCRC, by identifying the additional conditions. Using this, several SSD DSTBCs for PCRC are identified among the known classes of STBCs. It is proved that even if a SSD STBC for a co-located MIMO channel does not satisfy the additional conditions for the code to be SSD for a PCRC, single-symbol decoding of it in a PCRC gives full-diversity and only coding gain is lost. It is shown that when a DSTBC is SSD for a PCRC, then arbitrary coordinate interleaving of the in-phase and quadrature-phase components of the variables does not disturb its SSD property for PCRC. Finally, it is shown that the possibility of {\em channel phase compensation} operation at the relay nodes using partial CSI at the relays increases the possible rate of SSD DSTBCs from 2N\frac{2}{N} when the relays do not have CSI to 1/2, which is independent of N

    Wireless Bidirectional Relaying using Physical Layer Network Coding with Heterogeneous PSK Modulation

    Full text link
    In bidirectional relaying using Physical Layer Network Coding (PLNC), it is generally assumed that users employ same modulation schemes in the Multiple Access phase. However, as observed by Zhang et al., it may not be desirable for the users to always use the same modulation schemes, particularly when user-relay channels are not equally strong. Such a scheme is called Heterogeneous PLNC. However, the approach in [1] uses the computationally intensive Closest Neighbour Clustering (CNC) algorithm to find the network coding maps to be applied at the relay. Also, the treatment is specific to certain cases of heterogeneous modulations. In this paper, we show that, when users employ heterogeneous but symmetric PSK modulations, the network coding maps and the mapping regions in the fade state plane can be obtained analytically. Performance results are provided in terms of Relay Error Rate (RER) and Bit Error Rate (BER).Comment: 10 pages, 10 figures and 3 table

    Exponential approximations in optimal design

    Get PDF
    One-point and two-point exponential functions have been developed and proved to be very effective approximations of structural response. The exponential has been compared to the linear, reciprocal and quadratic fit methods. Four test problems in structural analysis have been selected. The use of such approximations is attractive in structural optimization to reduce the numbers of exact analyses which involve computationally expensive finite element analysis

    A formulation and analysis of combat games

    Get PDF
    Combat is formulated as a dynamical encounter between two opponents, each of whom has offensive capabilities and objectives. With each opponent is associated a target in the event space in which he endeavors to terminate the combat, thereby winning. If the combat terminates in both target sets simultaneously or in neither, a joint capture or a draw, respectively, is said to occur. Resolution of the encounter is formulated as a combat game; namely, as a pair of competing event-constrained differential games. If exactly one of the players can win, the optimal strategies are determined from a resulting constrained zero-sum differential game. Otherwise the optimal strategies are computed from a resulting non-zero-sum game. Since optimal combat strategies frequencies may not exist, approximate of delta-combat games are also formulated leading to approximate or delta-optimal strategies. To illustrate combat games, an example, called the turret game, is considered. This game may be thought of as a highly simplified model of air combat, yet it is sufficiently complex to exhibit a rich variety of combat behavior, much of which is not found in pursuit-evasion games
    • …
    corecore